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The existence of scaling behavior in real physical time in the punctuated-equilibrium model of
evolution proposed recently from Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] is assured
provided that the characteristic mutation time of a species varies exponentially with its fitness. A

self-consistent condition on the characteristic fitness is also derived.

PACS number(s): 87.10.+e, 05.40.+j

Biological evolution takes place in bursts separated by
a relatively long period of quiescence [1]. In fact, extinc-
tion may be episodic at all scales [2]. To capture the
essence of this scaling behavior, a self-organized critical
model of biological evolution, called the punctuated equi-
librium model, is introduced recently by Bak and Snep-
pen [3]. An ecosystem in the model is made up N species,
and a scalar between zero and one, called fitness, is as-
signed to each species. The higher the fitness, the more
adaptable to the ecosystem and hence the less likely to
mutate the species is. Thus the one with the minimum
fitness in the system is most likely to mutate or extinct
next. Fitness is therefore also a measure of the barrier
against mutation.

The one-dimensional punctuated equilibrium model of
evolution is summarized below: N species are arranged
on a line with periodic boundary condition. At each time
step, the species with minimum fitness together with its
two nearest neighbors are going to mutate by replacing
their fitness by uniform and uncorrelated random num-
bers between zero and one. The updating process is re-
peated forever. Scaling behavior is observed in the dis-
tribution of distance between successive mutations once
the stationary state is reached, which is a signature of
self-organized criticality. They found a threshold fitness
of value 0.67+0.01, above which we have zero probability
of finding a minimum fitness 8,,;, and the distribution of
fitness of all species is uniform. Similar results are found
for both the higher dimensional [4] and the mean field
models (where K randomly chosen sites other than the
one with minimum fitness mutate) [5].

It is believed that the characteristic mutation time for
a species with fitness s goes as

g(s) = Ac*® (1)

for some A > 0, and A >> 0 [2,6]. In fact, this is the reason
why the least fit species is always chosen to mutate next
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[3]. As a result, different cellular automaton time steps
may correspond to different real physical times elapsed.
For every fitness s, g(s) defines its characteristic muta-
tion time. So it is unclear if the mutation of different
species in real physical time in the punctuated equilib-
rium models exhibit scaling or not. Nevertheless, it is
certain that the presence or absence of scaling behavior
in real time depends on the form of g.

Now I am going to show the existence of scaling be-
havior in real physical time in the punctuated equilib-
rium models. And when no confusion is possible, a real
physical time will simply be called a time.

The probability that two successive mutation is sepa-
rated by time T is given by

P(T) = / 1(5min)O[T = G(Smin)]dSmin , (2

where p is the stationary probability distribution of the
minimum fitness s;,;n and J is the usual Dirac delta func-
tion. Provided that g is strictly increasing and differen-
tiable (thus g~ exists), Eq. (2) can be rewritten as

p(r) = 00 0
s lg-1(1)

as long as T is in the range of g [and P(T') = 0 otherwise].
Assuming the validity of Eq. (1), Eq. (3) becomes

P(T) = -—“(§/\1,}1%) : (4)

In the mean field model, p(Smin) is a constant below its
upper critical value s. [5]. Immediately, Eq. (4) tells us
that 1/T scaling is observed in P(T') with the lower and
upper cutoffs being A and Ae**<, respectively.

The situation is slightly more complicated in the one-

4691 ©1994 The American Physical Society



4692 BRIEF REPORTS 49

dimensional model because the exact form of y is un-
known. However, a numerical experiment done by Bak
and Sneppen suggests that (see Fig. 2 in [3])

3(1—-3—) if0<s<s,
MOERSA fe (5)
0 otherwise ,
and hence
2 1 T 2
PT) ~ 375, [1 " e, D :ﬂ ~ XTs. ©®)

for A < T < Ae**<. Once again, 1/T scaling is expected
over a wide range of T' provided that A is sufficiently
large. Using the same argument 1/T scaling can be found
in P(T) as long as p can be well approximated by a
polynomial function of s. Thus it is expected that various
variations of the punctuated equilibrium model all fall in
the same universality class.

The effective rate of mutation of a species with fitness
s is g—(lsj' Suppose the first species is the least fit one, then
the average combined rate of mutation in the ecosystem
excluding the first species is given by

Yo 1
> 55 = 90)
N—-1 , . -
:m(e’\ —e ’\), (7)

where (%) denotes the expectation value of é. This rate
should be much less than the slowest possible mutation

rate for the least fit species which is Otherwise

1
g(sc)”
the assumption of always letting the least fit species to
mutate is not justified. This imposes a condition on the

value of A, namely

5> (N-1)(1-eem1)) N
R ~ . (8)
— S¢ 1-— s,

In particular, Bak and Sneppen’s choice of A = 100 in
Fig. 3(b) of [3] for N = 64 is a little bit too small.

Besides the time between successive mutations, the dis-
tribution of the total number of mutations taken place in
a given time T (A < T < Ae**<) is another important
statistics to look at. For a sufficiently stiff g, this distribu-
tion is identical to that of the burst activity: namely, the
number of consecutive mutations with minimum fitness
less than a given value s < s, [3]. Flyvbjerg, Sneppen,
and Bak [4] have argued an s~3/2 scaling for the distri-
bution of burst activity for the mean field model. More-
over, numerical simulation suggests an s~ %9%%! scaling
for that of the one-dimensional model [3].

In summary, scaling behaviors are observed in real
physical time in the punctuated equilibrium model (and
its variations). While the scaling in burst activity is rel-
atively independent of the mutation time scale g(s), the
1/T scaling in the time between successive mutations oc-
curs only when g is exponentially dependent on s. In
addition, an upper bound for the characteristic fitness,
5. 51— —{\{-, is found which varies linearly with the total
number of species N in the ecosystem.
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